
Testing the Kibble-Zurek mechanism in Rayleigh-Bénard convection

S. Casado, W. González-Viñas,* and H. Mancini
Department of Physics and Applied Mathematics, Universidad de Navarra, Irunlarrea s/n, E-31080 Pamplona, Spain

�Received 23 January 2006; published 12 October 2006�

We report experimental evidence of the fact that, in an emerging Rayleigh-Bénard structure, the density of
defects which appear scales as a power law in the rate of change of the control parameter. The scaling
exponents agree with those calculated from the Kibble-Zurek mechanism. This is the first evidence to our
knowledge that this mechanism works in a hydrodynamical system.
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Transitions in nature where there is a symmetry breaking
are ubiquitous: from the Big Bang, after which soon ap-
peared huge cosmological structures like galaxies as well as
the tiny elementary particles �1�, to bifurcations between
nonequilibrium states in many-body systems �2�, including
many condensed matter phase transitions like the martensi-
tic, superconducting, and superfluid transitions among others
�3–5�.

One of the most interesting features of symmetry breaking
transitions is the evolution of the system through the sym-
metry breaking process.

The behavior of out-of-equilibrium bifurcations in con-
tinuum media is characterized by emerging macroscopic
structures commonly called patterns �6,7� which can be char-
acterized by a generalized order parameter field. The main
advantage of studying those systems as models for all sym-
metry breaking transitions comes from their ease of analysis
and experimental treatment due to the human scale of the
structures formed.

Usually the appearance of phase singularities or topologi-
cal defects is involved with such transitions in the following
way. Consider a symmetry breaking transition, that is to say,
a transition from a more symmetric phase to a less symmet-
ric one. First, topological defects could arise as a relic of the
more symmetric phase in the less symmetric one, when
crossing from the former to the latter. Second, these defects
are topologically stable. The core of the defects is a localized
state different from the �stable� less symmetric phase. This
localized state is stabilized by topological constraints, which
also diminish its symmetry. Consequently the defect repre-
sents a local bifurcated state with a lower symmetry than the
less symmetric phase �8,9�. On the other hand, when the
control parameter is increased enough in the same phase,
there appear defects as a result of the nonlinearities in the
system. These defects, like the others described before, also
are local bifurcated states with less symmetry. In the next
symmetry breaking transition these defects could be the
germs from which the next stable state emerges �8,9�. In
conclusion, defects play a major role in the transition from
one symmetry to another, actually allowing the transition
�10�. Topological defects in structures can be classified ac-
cording their homotopy group �11–15�.

Kibble �1� proposed that defects also are important in the

phase transitions occurring soon after the Big Bang because
they yield the density of galaxies. After him, Zurek �16,17�
extended this kind of mechanism of defects appearing to
condensed matter systems. The argument is the following.
Suppose that the control parameter is changing linearly
slowly. If the system is far from the critical point, the state
changes adiabatically to fit to the equilibrium state defined
by the instantaneous control parameter value. But, when the
system is near a second-order transition, the equilibrium cor-
relation length should change more quickly than the limiting
speed in the system due to the slowing down of the relevant
modes. This speed, in condensed matter systems, is com-
monly the speed of sound. Thus, the system gets frozen until
the adiabatic dynamics is restored well after the transition
point. The correlation length measured after the transition is
the one the system had when it froze. This is known as the
Kibble-Zurek mechanism, and is thought to lead to a univer-
sal scaling law for the correlation length upon the rate of
change of the control parameter, which depends only on the
space dimension, topology, and dissipative character of the
system.

This point of view is compatible with what has been said
above. A symmetry breaking transition where two equivalent
domains could grow in the more symmetric phase may lead
to a lack of “phase matching” for the less symmetric do-
mains. The phase is the parameter�s� corresponding to the
symmetry that is broken in the transition and could lead to
two �or more� equivalent domains. The localized state with
even fewer symmetries appearing in the region where the
lack of phase matching occurs is a topological defect. These
topological defects appear with distances among them
that give, on average, the correlation length of the order
parameter.

The possibility of confirming cosmological theories in a
laboratory �16,18–20� has induced the performance of sev-
eral experiments on nonequilibrium phase transitions, among
others in superfluid helium �21–27�, liquid crystals �28–30�,
superconductors, and Josephson junctions �31–36�, and in
nonequilibrium bifurcations in nonlinear optical systems
�37,38� and convective systems �38–40�.

In this Brief Report we aim at verifying that there exists a
scaling law for the defect density when the rate of change of
the control parameter is swept across the symmetry breaking
transition point, focusing on the critical exponent of such a
scaling law. The purpose is to shed light on the question of
whether the Kibble-Zurek mechanism could work for hydro-
dynamic systems or not, considering the negative results in*Corresponding author. Electronic mail: wens@fisica.unav.es
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the past �39�. In that work, the discrepancy was suggested to
be attributable to the fact of more than one interacting mode
coexisting in the less symmetric phase.

Here we report experimental results concerning the defect
density which appear in a conduction-convection bifurcation
of a Rayleigh-Bénard system �41–44�. The state below the
bifurcation threshold is a homogeneous conduction state. The
state after the transition point comes from the destabilization
of convective modes, and may lead to a structure of stripes
�convective rolls� or squares �convective cells� depending,
among other parameters, on the thermal conductivity of the
boundaries relative to the fluid. Our experimental set-up al-
lows us to check the Kibble-Zurek mechanism in a Rayleigh-
Bénard system �17,45� with two convective modes, while the
previous work in nonequilibrium bifurcations �37–40� ex-
plored the one-mode case �which agreed with Zurek-Kibble
theory� and the three mode case �which did not agree with
that theory�.

For experimental studies, a layer �depth h=3 mm� of sili-
cone oil with �=20 cS is placed in a nylon square container.
Below the fluid there is a polished metallic plate heated from
below by an electric resistance designed for a homogeneous
distribution of heat. The upper surface of the fluid is in con-
tact with a glass window, whose temperature T=T0 is stabi-
lized by a thermal bath.

In the range of applied temperatures the physical proper-
ties of the fluid do not suffer a great change �the Boussinesq
approximation is valid�. It is transparent to the light, allow-
ing optics measurements. Furthermore, in the region of con-
trol parameter used there is only a primary bifurcation.

Local temperature was measured by three T-type thermo-
couples �see Fig. 1�, the first one just below the fluid and the
other two at the cell entrance and exit of the water used by
the thermal bath. The reading of thermocouples is done by a
computer-controlled multimeter. The global temperature field
�pattern, see Fig. 1�b�, right� is obtained by a shadowgraph
and structure images are captured by a charge-coupled de-
vice camera connected to a computer.

The experimental setup described above is similar to oth-
ers used by our group before �38–40�.

The control parameter of Rayleigh-Bénard convective
systems is �= ��T−�Tc� /�Tc, which means the nondimen-
sional distance to the �static� convective transition point. The
measurement process consists of the following steps. First
the system is set in a stationary conductive state ��=−�0�
�see Fig. 1�b�, left and bottom� just below the �static� con-
vective threshold, by applying a power P1 to the heater. The
measurement begins with a sudden increase of the power
delivered to the system to a value P2 �see the curve in Fig.
1�b�, top�. The control parameter � increases, at the consid-
ered time scale, linearly �see Fig. 1�b�, bottom� in time. The
times are nondimensionalized with the vertical temperature
diffusion time. At some time corresponding to �= �̂�0 a
structure abruptly gets formed, and then a snapshot of the
pattern is taken to analyze it �45�. We define the rate of
increase � of the control parameter as the nondimensional
slope of the control parameter at �=0. The first run of this
procedure allows us to determine the value of the control
parameter when the structure is formed, �̂, at a fixed �. Us-
ing this value as the reference when the snapshot has to be

taken, the procedure is repeated ten times for each sudden
increase of power delivered to the system, as a compromise
between the time spent on the experiment and the statistical
error. After that, the whole process is repeated for another �,
which can be obtained changing the value of P2.

The image obtained in each measurement �similar to the
image shown in Fig. 1�b�, right� is processed. Since the pat-
terns obtained are of square geometry, it is not possible to
proceed to study the connectivity properties of the convec-
tive cells through Voronoi analysis �as in �39��. The problem
is the geometric instability of the coordination number for
this kind of pattern, i.e., in a perfect square pattern if one site
is very slightly moved �in such a way that clearly does not
appear as a topological defect� the coordination number for
this site changes abruptly. Here, instead, we use the method
of complex demodulation �40,46,47�. As the square pattern
can be seen as the superposition of two perpendicular modes,
whose directions are approximately anchored by the bound-
aries, we consider these modes filtered with the largest pos-
sible radius without overlapping. In this way we obtain the
topological defects as phase discontinuities. Also, we reject
the region close to the boundaries to remove their influence
on the correlation properties of the phase.

It is important to say that the filtering in the Fourier space
inserts a coarsening spatial scale. This problem becomes im-
portant only for defect densities greater than 1/�2, where � is
the characteristic wavelength of the pattern. This is not the
case obtained in this work.

FIG. 1. The experimental setup.
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We report how the control parameter value at which the
structure forms, �̂, depends on the rate of increase of the
control parameter ���, and also how the number of defects
�related always to the same area� at the time corresponding to
�= �̂�0 depends on �. The physical aspect ratio a=L /� is
the nondimensional length of the cell side. In this experiment
it is 19.

There is a limit to the range of possible time scales to
choose �. On the side of fast quenches the experiments are
basically limited by the thermal inertia of the metallic plate
�of the order of 15 s� and by the vertical thermal diffusion
time—defined as the square of the fluid depth divided by the
thermal diffusivity—which is 91 s. On the side of slow
quenches, we are limited by the slow dynamics of the struc-
ture due to small inhomogeneities in the system �48�.

In all the measurements the number of defects obtained is
larger than 50, usually being around 90. This fact, together
with the multiple �10� sudden increases in power delivered to
the system, warrants that we can extract scaling law proper-
ties from the results, as the statistics is good enough.

In Fig. 2 we report results of �̂ versus the rate � in loga-
rithmic scale. Each curve point is the mean of ten measure-
ments, and the error bars on the two axes are the standard
deviations of the control parameter of appearance of the
structure and of �. The curve was fitted well with a power
law and the exponent is 0.40±0.05. Figure 3 reports the
number of defects when �= �̂ versus the rate � on a logarith-
mic scale. The curve was fitted with a power law, as shown
in Fig. 3.

As the system area is constant, as well as the number of
convective cells, the curve of the number of defects �Fig. 3�
scales in the same way as the density of defects �def.

The first thing to check in order to verify the Kibble-
Zurek mechanism is that the control parameter correspond-
ing to the formation of the structure ��̂� follows a power law
with its rate of change ���. Comparing with the work of
Zurek �17� the exponent of the curve should be 1

2 . As the

snapshots are taken at a fixed �̂ for each power delivered to
the system, the measured rates of change of the control pa-
rameter are lower bounds of the expected value, due to the
overestimation of the value of �̂ because of the experimental
system resolution. Furthermore, this overestimation is higher
at lower values of �. So we expect that the measured value
for the exponent �0.40±0.05� is slightly smaller than the one
predicted by Zurek.

Regarding the result for the number of defects, the expo-
nent predicted by Zurek is also 1

2 �17�. This value lies within
our experimental error �0.45±0.07�.

In conclusion, the experimental results presented here
show that the number of defects and the control parameter
value at the appearance of structure vs the quench rate follow
scaling laws for a conduction-convection transition in a
Rayleigh-Bénard system. The values of the exponents are
compatible with the ones predicted by Zurek for condensed
matter systems.

The agreement of the exponents confirms that there are
hydrodynamic systems with more than one mode coexisting
in the less symmetric phase in which the Kibble-Zurek
mechanism works. The disagreement with previous negative
tests �39� might be because in the kind of system studied
there �Bénard-Marangoni� the interaction between the differ-
ent modes in the transition is very important �40�, while in
the system studied here such interaction is not important.
Another possible reason could be related to the fact of hav-
ing more than two modes intrinsically.

The authors acknowledge W. Zurek, R. Ribotta, and J.
Burguete for useful discussions. We are indebted to S. Boc-
caletti who suggested to us the experimental check of the
Kibble-Zurek mechanism in out-of-equilibrium systems.
Work was partly supported by the Spanish MCyT Contract
No. BFM2002-02011 and by ESF COSLAB. S.C. acknowl-
edges financial support from the “Asociación de Amigos de
la Universidad de Navarra.”

FIG. 2. Value of the control parameter at which the structure is
formed ��̂� as a function of �. Both axes are on logarithmic scale.

FIG. 3. Number of defects �at �= �̂� vs �. Both axes are on
logarithmic scale.
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